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Nonlinear-resonance analysis of halo formation excited by beam-core oscillation
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~Received 13 October 1999!

The emittance growth and halo formation for a mismatched beam of a one-dimensional Gaussian distribu-
tion in a uniform focusing channel were examined by means of a macroparticle simulation. The results were
analyzed by isolated nonlinear resonance theory. The second-harmonic resonance driven by beam-core oscil-
lation was both numerically and analytically shown to assume a key role in forming a halo. An analytic
estimation of the halo location was explored, and the halo location was proved to correspond to the outer edge
of the resonance islands. Nonlinear fields in an actual particle distribution have been shown to significantly
affect both the halo’s location and size.

PACS number~s!: 41.75.2i, 29.27.Bd, 52.25.Wz
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I. INTRODUCTION

One of the major issues in high-power accelerators
neutrino factories, spallation neutron sources, tritium prod
tion, nuclear waste transformation, and heavy ion fus
drivers is the activation of accelerator components due
beam loss. The beam loss must be reduced to a suffucie
low level to allow hands-on maintenance. The loss rate co
monly accepted in accelerator society is known to be 1 W
except for specified regions, such as the halo-collimation
gion. In order to produce an acceptable design, it is imp
tant to understand the mechanisms of emittance growth
halo formation that result in beam loss.

Most of the recent attention has been focused on dr
linacs. Totally self-consistent particle in cell simulatio
~PIC! codes have been developed, which have demonstr
a wide variety of aspects of halo formation for realistic be
distributions@1#. Meanwhile, the analysis and understandi
of space-charge effects for particle beams in linacs has b
greatly facilitated by using particle core models~PCMs!. As
the driving mechanism of halo formation, a resonant~para-
metric! interaction between the breathing core and the in
vidual particles oscillating through the beam core has b
explored using this model by many research groups@1–3#.
Certainly, PCMs are useful for developing a qualitative u
derstanding of the halo-formation mechanism, and the
plored mechanisms are suggestive for a more realistic di
bution as mentioned in Ref.@3#. However, there is no
confidence that we are capable of quantitatively estima
the size of a halo and its parameter dependence.

In contrast to the case for linacs, an understanding
halo-formation mechanisms in circular rings seems to
quite difficult even when using PIC codes with realistic d
tribution, because numerical calculations over a suffici
number of turns require unrealistic CPU times and mem
and repeated betatron oscillations through a huge numbe
lattice elements take a key role in the resonant interact
We have pursued a strategy to develop a useful ana
model capable of predicting the position of the halo as
function of the beam and machine parameters for a real
beam distribution. As the first step of this strategy, halo f
PRE 621063-651X/2000/62~2!/2797~7!/$15.00
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mation in a one-dimensional~1D! Gaussian distribution in a
uniform focussing channel has been numerically examin
and a second-harmonic nonlinear resonance excited by
rms core oscillation has been identified to be a drivi
mechanism of halo formation. This view has been confirm
by an analytic approach based on isolated nonlinear re
nance theory@4,5#. The simulation and theory have show
that highly nonlinear components in real distribution strong
affect the halo location. The current analytic approach is
lieved to be a germinal model in future theory dealing with
2D realistic distribution in the FODO lattice.1

The organization of this paper is as follows. In Sec. II, w
present a model of a 1D multiparticle simulation. The dev
oped simulation is justified by a comparison with an equil
rium solution of Vlasov’s equation. In Sec. III, three cases
a mismatched space-charge-dominated beam are discu
based on this simulation model. The isolated resona
Hamiltonian is applied to explain the simulation results
Sec. IV. In Sec. V, the obtained results are summarized.

II. MULTIPARTICLE SIMULATION

First of all, we describe a 1D simulation method whic
was used to understand the detailed and dynamic proce
involved in the physical phenomena. In the simulation
beam distribution is assumed to be both infinite and unifo
in the horizontal and longitudinal planes and finite and no
uniform in the vertical plane. Space-charge fields affect
betatron motion of the beam in the vertical direction. In a
dition, it is assumed that the beam propagates through
space so that the effect of the image charge is ignored.

The electric field originating from the beam space cha
in the rest frame~wherex, y, ands represent the horizontal
vertical, and longitudinal axes, respectively! is written as

Ey~y!5
e

2e0
F E

2`

y

n~q!dq2E
y

`

n~q!dqG , ~2.1!

1FODO is an array of magnets where F is focusing, D is defoc
ing, and O is the drift space between magnets.
2797 ©2000 The American Physical Society
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2798 PRE 62YOSHITO SHIMOSAKI AND KEN TAKAYAMA
wheren(y) is the particle-density function in the rest fram
and e0 is the permittivity of the vacuum. The space-char
forces in the laboratory frame are written asFy(y)
5eEy(y)/g, whereg is the relativistic mass factor. If the
particle energy is constant, the betatron equation is given

y91vb
2y5

eEy~y!

g2mv2
, ~2.2!

where the prime indicatesd/ds, vb is the bare betatron fre
quency, andv is the velocity of the design particle. In gen
eral, Ey(y) is nonlinear with respect toy. The perturbing
effects of nonlinear fields are included asd functions like
kicks @6#,

S ys1Ds

ys1Ds8 D5M S ys

ys8
D1S 0

eEy~ys1Ds!

g2mv2
DsD , ~2.3!

whereM is the transfer matrix of the linear focusing syste
and Ds is the longitudinal step. The electric field, which
assumed to be constant throughDs, is measured at the exit o
step. In this way, the symplectic condition is satisfied.

The space-charge fields depend onn(y) as shown in Eq.
~2.1! and its magnitude changes bin by bin. At the exit of t
step,n(y) is calculated by using the histogram obtained fro
the phase-space mapping of particles with the vertical
Dy. The numerical integration ofn(y) with linear interpola-
tion gives a space-charge field.

We chose to apply the current study to the 12-GeV pro
synchrotron~KEK-PS!. Most of the calculation parameter
were taken from the KEK-PS, whereC5340 m is the
circumference, the bare tunes arenx57.15 andny56.23,
where 2pny5vbC, and the injection energy is 500 MeV
In order to manifest the key role of the space-cha
effects in halo formation, an extremely high curre
Dn51.85, was studied, where Dn5@vb

2Avb
22e2^n0&g

22e0
21m21v22#C/(2p) is the incohrent

tune shift. In simulations, 105 macroparticles, which were
chosen from the limit of the available CPU, were tracked
more than 100 turns. For choosingDs, the saturation of the
rms beam sizes of the simulation result was monitored as
function of Ds ~see Fig. 1!. As a result,Ds55 cm was
applied. The value ofDy is a common parameter for bot
histogram and numerical integration. ADy too short is very

FIG. 1. s vs Ds. Step-size dependence of simulation resu
Here ~s! is rms beam size after one turn.
y

in

n

e
,

r

sensitive to noise and aDy too large gives a very discret
distribution in the histogram. It has turned out thatDy
5(full beam size)/100 provides sufficient accuracy.

To justify the simulation scheme, we think in terms of a
equilibrium state which has an analytic solution under
space-charge effects. Vlasov’s equation tells us that any
qilibrium distribution functionf is a function of the Hamil-
tonian H. As an example, the Gaussian distribution
f (y,p)5 f 0exp(2H/H0), wheref 0 is the value at the origin in
phase space andH0 is a normalizing function, and the
Hamiltonian is written as

H5
1

2
p21

vb
2

2
y21

eU

gmv2
. ~2.4!

Then, the self-potential satisfies Poisson’s equation¹2U
52en(y)/e0. The density function is obtained by integra
ing f (H) over momentum space:n(y)5n0exp@2$(vby)2/2
1eU/(gmv2)%/H0# and n05A2pH0f 0 The electric field
for the equilibrium state is dominated by the equation

]Ey

]y
5

en0

e0
expF2

1

H0
S vb

2

2
y22

e

gmv2E0

y

EydyD G .

~2.5!

Numerically solving Eq.~2.5!, we haveEy(y); then, its nu-
merical integration gives a steady potentialU(y). Substitut-
ing U(y) into Eq. ~2.4!, we have an equilibrium Gaussia
distribution functionf (H). This exact equilibrium Gaussia
distribution was put into the calculation as an initial cond
tion of the simulation. The simulation results are shown
Fig. 2. The rms emittance does not change much, w
growth of less than 0.3%. For a comparison, an exact e
librium Gaussian distribution function without any spac
charge effects was calculated. The growth of its rms em
tance is shown in the same figure. Its rms emittance quic
saturates with a big growth of about 4%. The discrepan
between the two cases is quite clear. Thus, the simula
scheme has been confirmed to give a reasonable result.

III. STEADY STATES FOR MISMATCHED GAUSSIAN,
WATERBAG, AND SQUARE-COSINE DISTRIBUTIONS

We now call a beam having an exact equilibrium dist
bution function with space-charge effects as a ‘‘match

. FIG. 2. rms emittance growth.
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beam’’ and other beams as ‘‘mismatched beams.’’ The sim
lations were carried out for three cases of mismatched be
with Gaussian, waterbag, and square-cosine distributi
The square-cosine distribution is defined asf (y,y8)
5 f 0cos2@pAy21y82/$2R(y,y8)%#, where R(y,y8) is the
distance from the origin to the outer edge through (y,y8) in
phase space. Notable features are that the profile is con
ous at the beam boundary like that of a Gaussian distribut
and the beam edge is finite like that of a waterbag distri
tion. All initial distribution functions have the same tot
current and the same rms emittance as the matched bea

The rms emittance growth of the mismatched beam
shown in Fig. 3. Gaussian and square-cosine distribut
quickly arrive at the steady state after less than a few ten
turns (<3 for Gaussian and<30 for square-cosine!,
whereas the rms emittance of the waterbag beam still gr
over 1200 turns~see Fig. 4!. The beam density of each dis
tribution is shown in Fig. 5. It is found that a beam with a
initial square-cosine distribution approaches a Gaussian
tribution in the steady state. On the other hand, a beam
a waterbag distribution tends to become flat because o
distribution towards the beam edge.

The phase-space projections are shown in Fig. 6, and
gest that particles escaping from the core are responsible
the growth of rms emittance. In addition, it is remarkab
that there are two vacant regions where particles do not e
This particle redistribution seems to originate from nonline
resonances. Ten test particles were put in one vacant re
for the square-cosine distribution@see Fig. 7~a!# and tracked
for another 100 turns. The oscillation frequency spectra

FIG. 3. rms emittance growth of the mismatched beams.

FIG. 4. RMS emittance growth of the mismatched waterb
beam.
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tained by fast Fourier transform~FFT! are shown in Fig.
7~b!, where the particles are numbered from the beam c
edge toward the outside. All spectra indicate sharp pe
wherenb55.23 is the net betatron tune depressed by spa
charge forces. For a comparison, the oscillation freque
spectra for nonresonant particles are shown in Figs. 7~c! and
7~d!. The oscillation frequency simply depends on the os
lation amplitude because of the nonlinear space-cha
fields. This means the motions of the test particles are do
nated by nonlinear resonances and the vacant region c
sponds to the resonance islands.

Since there are no external nonlinear fields in the unifo
focusing channel, the sources driving the nonlinear re
nances have been identified to be the space-charge
fields. The simulation results also show a notable oscillat
of the rms beam size as shown in Fig. 8, which is sim
induced by mismatching. A parametric resonance betw
the single-particle motion and the rms beam core oscillat
can be excited when the depressed betatron tunenb and the
rms core oscillation tunenc satisfynb /nc5 i / j , wherei and
j are integers@7#. The lowest dominating resonance is obv
ously a second-harmonic resonance which is capable of
ating two resonance islands as shown in Fig. 6. Certainly,
FFT of the core oscillation exhibits a single sharp peak
nc510.45 as shown in Fig. 9. The results strongly sugg
that the major source of the second-harmonic resonanc
the rms beam core oscillation.

g

FIG. 5. Beam-density profile for three initial distributions:~a!
Gaussian,~b! square-cosine, and~c! waterbag. The dashed and sol
lines denote the initial state and 100th turn, respectively, and
dashed and single-dotted lines represent the Vlasov’s solutio
Fig. 2.
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IV. NONLINEAR RESONANCE EXCITED
BY BEAM-CORE OSCILLATION

In order to confirm the speculation suggested by the sim
lation results that the rms beam-core oscillation is capabl
driving the second-harmonic resonance, we have develo
an analytic approach using an isolated resonance Ha
tonian. Here, the beam distribution is assumed to be a Ga
ian distribution with the rms beam size oscillating at a sin
frequency. This iss(s)5s0@11d cos(vcs)#, wheres0 is the
averaged rms beam size,d is the maximum deviation from
s0, andvc52pnc /C is the frequency of the beam-core o
cillation. Then the Gaussian distribution in the rest frame
given by n(y,s)5N0exp@2y2/$2s(s)2%#/$A2ps(s)%, where
N0 is the total number of particles per unit length in the r
frame. The electric field of this beam associated with
charge density is written in the form of a Taylo
expansion Ey(y,s)5eN0(n50

` (21)ny2n11/$e0A2pn!(2n
11)2ns(s)2n11%. The original perturbed betatron equatio
~2.2! is rewritten as

y91vb
2y5A0(

n50

`
~21!n

n! ~2n11!2n

y2n11

s~s!2n11
, ~4.1!

whereA05e2N0 /$g2e0mv2A2p%. Introducing action-angle
variables (f,J), where y5A2J/v0cosf and p
5A2v0Jsinf, the Hamiltonian equivalent to Eq.~4.1! is
expressed as

FIG. 6. Phase-space projections of mismatched beams a
initial condition ~left! and 100th turn~right!. ~a! Gaussian,~b!
square-cosine, and~c! waterbag.
-
of
ed
il-
ss-
e

s

t
e

H5vbJ2A0(
n50

`
~21!n

n! ~2n12!~2n11!2ns0
2n11

3S 2J

vb
D n11

Fn~f,s!, ~4.2!

he

FIG. 7. ~a! Position~solid triangle! and~b! frequency spectra of
the test particles.~c! The Poincare´ map and~d! the frequency spec-
tra of nonresonant particles.
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PRE 62 2801NONLINEAR-RESONANCE ANALYSIS OF HALO . . .
where

Fn~f,s!5
cos2n12f

@11d cos~vcs!#2n11
. ~4.3!

In the case of interest, whered!1, Eq.~4.3! is approximated
by

Fn~f,s!5@12~2n11!d cos~vcs!#cos2n12f. ~4.4!

Here, cos(vcs)cos2n12f in Eq. ~4.4! is decomposed in term
of cos(2lf6vcs), wherel is an integer. The second-harmon
resonance is excited in the case that the phase of Eq.~4.4!
slowly varies with s. Because the second-harmonic res
nance of the simulation result is excited in the case
nb /nc51/2, it is found that the slowly oscillating phase
2f2vcs. The rapidly oscillating terms, except for the term
including 2f2vcs, disappear after averaging the Ham
tonian of Eq.~4.2! over many turns@5#. The averaged Hamil-
tonian is called the isolated resonance Hamiltonian. A
nonical transformation from (f,J) to (c,J), where c5f
2vcs/2 is physically a rotation in phase space, is made
remove any time dependence from the isolated resona
Hamiltonian. The isolated resonance HamiltonianHiso is
written as

Hiso5S vb2
vc

2 D J22s0A0(
n50

`

a~n!Jn11

3F 1

n11
2

2n11

n12
d cos~2c!G , ~4.5!

FIG. 8. s of mismatched beams.

FIG. 9. Frequency spectrum of the rms beam core oscilla
after arriving at a steady state.
-
f

-

o
ce

wherea(n)52(2n)!(n!) 23(n11)21(24s0
2vb)2n21. The

derivation is given in the Appendix.
A contour plot of the Hamiltonian~4.5! is shown in Fig.

10. The values ofv0 , s0, and d at the steady state ar
chosen based on the simulation results for the case o
initial square-cosine beam. Two resonance islands are sh
clearly. The position and size of the resonance islands
well known to be a good measure of the relative strength
perturbing terms. We evaluate these parameters from
beam parameters and the machine parameters. For this
pose, we will find the stable fixed and unstable fixed poi
of this nonlinear system. The stable fixed points atc5p/2
and 3p/2 rad and the unstable fixed point atc50 and
p rad are analytically evaluated from the canonical eq
tions dc/dt5]H/]J50 and dJ/dt52]H/]c50. The
maximum and minimum values of the action variable alo

FIG. 11. Jmax, Jmin and resonance width vsnmax.
n

FIG. 10. ~a! Contour plot of the Hamiltonian~10!. ~b! Simula-
tion result of Fig. 6 exhibited in the action-angle space.s0

54.38 mm corresponds toJ5251.2 m2 rad21 s21 at f50 rad.
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2802 PRE 62YOSHITO SHIMOSAKI AND KEN TAKAYAMA
the trajectory through the unstable fixed point are defined
Jmax andJmin , respectively. The size of the resonance isla
~resonance width! is given byJmax2Jmin on the action axis.

In order to obtain a necessary and sufficient limitnmax in
summation of Eq.~4.5!, the values ofJmax, Jmin and the
resonance width were calculated as a function ofnmax. Its

FIG. 12. ~a! s0 andnc vs Dn. ~b! d vs Dn. ~c! Jmax andJmin vs
Dn. ~d! Resonance width vsDn.
s
d

result is shown in Fig. 11. Also,nmax must be more than 11
A lower nmax gives the wrong results. Here,nmax515 has
been applied.

Calculations ofJmax and Jmin are straightforwardly per-
formed using the canonical equations, if the values ofs0 ,
vc , and d at the steady state, which depend on the init
state, are given. The example of the simulation result sho
in Figs. 12~a! and 12~b! was obtained assuming initial state
with the same square-cosine distribution but with a differ
Dn. The Jmax andJmin are calculated employing each set
the above parameters. The calculated locations of the r
nance islands are in good agreement with the simulation
sults as shown in Figs. 12~c! and 12~d!. We have reached the
conclusion that the second-harmonic resonance is driven
the beam-core oscillation of the nearly Gaussian distributi
In addition, Fig. 10 clearly indicates that the outer edge
the resonance corresponds to the location of the halo.

V. CONCLUSION

Parametric interactions between a core oscillation and
highly nonlinear motion of individual particles drive th
second-harmonic resonance for a 1D Gaussian distribut
This idea supports the speculation of Ref.@3# for a realistic
beam distribution. The second-harmonic resonance i
source of emittance growth, which results in a beam halo
the outer edge of the resonance islands. The location of
halo is analytically tractable using canonical equations
rived from the isolated resonance Hamiltonian. Nonlinear
in the particle motion is crucial in determining the locatio
of the halo; the second-harmonic terms down-fed fro
higher order of the nonlinear terms are included in order
accurately estimate the halo location. An estimation of
halo location would provide a reasonable choice of
physical aperture or halo collimator in proposed hig
intensity proton accelerators.

Applications of the developed analytic tool for a mo
realistic 2D distribution in periodic focusing seem to b
straightforward. They will be discussed in forthcoming p
pers.
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APPENDIX

In this appendix, we derive Eq.~4.5! from Eq. ~4.2!. In
Eq. ~4.4!, the substitution

cos2n12u5
1

22n12 S 2n12
n11 D1

1

22n11

3(
l 51

n S 2n12
n2 l 11D cos~2lu! ~A1!

gives
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Fn~f,s!5
1

22n12 S 2n12
n11 D2

2n11

22n12 S 2n12
n11 D dcos~vcs!

1
1

22n11 (
l 51

n S 2n12
n2 l 11D cos~2lf!

2
~2n11!d

22n12 (
l 51

n S 2n12
n2 l 11D $cos~2lf1vcs!

1cos~2lf2vcs!%. ~A2!

Thus, the time-averaged Hamiltonian is given by
, in

ys
^H&5vbJ2A0

3K (
n50

`
~21!n

n! ~2n12!~2n11!2ns0
2n11 S 2J

vb
D n11

Fn~f,s!L
5vbJ2A0(

n50

`
~21!nJn11~2n!!

~n! !3~n11!~2s0!2n11vb
n11

3F 1

n11
2d

2n11

n12
cos~2f2vcs!G . ~A3!

Since ^H& is not a constant of the motion, the canonic
transformation from (f,J) to (c,J) is made, where the gen
erating function isF25cJ. Thus, the isolated resonanc
Hamiltonian, Eq.~4.5!, is obtained.
.
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