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Nonlinear-resonance analysis of halo formation excited by beam-core oscillation
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The emittance growth and halo formation for a mismatched beam of a one-dimensional Gaussian distribu-
tion in a uniform focusing channel were examined by means of a macroparticle simulation. The results were
analyzed by isolated nonlinear resonance theory. The second-harmonic resonance driven by beam-core oscil-
lation was both numerically and analytically shown to assume a key role in forming a halo. An analytic
estimation of the halo location was explored, and the halo location was proved to correspond to the outer edge
of the resonance islands. Nonlinear fields in an actual particle distribution have been shown to significantly
affect both the halo’s location and size.

PACS numbdp): 41.75~i, 29.27.Bd, 52.25.Wz

I. INTRODUCTION mation in a one-dimension&l D) Gaussian distribution in a
uniform focussing channel has been numerically examined,

One of the major issues in high-power accelerators foand a second-harmonic nonlinear resonance excited by the
neutrino factories, spallation neutron sources, tritium producfms core oscillation has been identified to be a driving
tion, nuclear waste transformation, and heavy ion fusiormechanism of halo formation. This view has been confirmed
drivers is the activation of accelerator components due t&Y an analytic approach based on isolated nonlinear reso-
beam loss. The beam loss must be reduced to a suffucientl}/}ance_ theory4,5]. The simulation and theory have shown
low level to allow hands-on maintenance. The loss rate com{N@t highly nonlinear components in real distribution strongly
monly accepted in accelerator society is known to be 1 w/maffect the halo location. The current analytic approach is be-
except for specified regions, such as the halo-collimation relieved to be a germinal model in future theory dealing with a
gion. In order to produce an acceptable design, it is impor2D realistic distribution in the FODO lattice.
tant to understand the mechanisms of emittance growth and '€ organization of this paper is as follows. In Sec. II, we
halo formation that result in beam loss. present a model of a 1D multiparticle simulation. The devel-

Most of the recent attention has been focused on drivePPed simulation is justified by a comparison with an equilib-
linacs. Totally self-consistent particle in cell simulation fium solution of Vlasov's equation. In Sec. lll, three cases of
(PIC) codes have been developed, which have demonstratét Mismatched space-charge-dominated beam are discussed
a wide variety of aspects of halo formation for realistic beamPaS€d on this simulation model. The isolated resonance
distributions[1]. Meanwhile, the analysis and understandingramiltonian is applied to explain the simulation results in
of space-charge effects for particle beams in linacs has beereC: IV- In Sec. V, the obtained results are summarized.
greatly facilitated by using particle core mod€RCMS. As
the driving mechanism of halo formation, a resonéréra- Il. MULTIPARTICLE SIMULATION
metric) interaction between the breathing core and the indi-
vidual particles oscillating through the beam core has bee
explored using this model by many research grops3].
Certainly, PCMs are useful for developing a qualitative un-

First of all, we describe a 1D simulation method which
Was used to understand the detailed and dynamic processes
involved in the physical phenomena. In the simulation, a
beam distribution is assumed to be both infinite and uniform

betatron motion of the beam in the vertical direction. In ad-
jStion, it is assumed that the beam propagates through free

) . hat the eff f the im harge is ignored.
In contrast to the case for linacs, an understanding Of,pace so that the effect of the image charge is ignored

halo-f i hani i cireular i o b The electric field originating from the beam space charge

alo-formation mechanisms In circuiar rings Seems 10 Dy, y,q yagt framdwherex, y, ands represent the horizontal,
qylte_dn‘ﬁcult even when using PIC co_des with reallst|c_ d.'s'vertical and longitudinal axes, respectively written as
tribution, because numerical calculations over a sufficient ' '

number of turns require unrealistic CPU times and memory e y o

and repeated betatron oscillations through a huge number of Ey(y)= 2—“ n(q)dq—f n(q)dq}, (2.1
lattice elements take a key role in the resonant interaction. o[ J—= y

We have pursued a strategy to develop a useful analytic

model capable of predicting the position of the halo as a

function of the beam and machine parameters for a realistic!FODO is an array of magnets where F is focusing, D is defocus-
beam distribution. As the first step of this strategy, halo for-ing, and O is the drift space between magnets.

the size of a halo and its parameter dependence.
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FIG. 1. o vs As. Step-size dependence of simulation results. FIG. 2. rms emittance growth.

Here (o) is rms beam size after one turn.

) ) ] o sensitive to noise and Ay too large gives a very discrete
wheren(y) is the particle-density function in the rest frame istripution in the histogram. It has turned out thay
and ¢ i§ the permittivity of the vacuum. The space-charge:(fu” beam size)/100 provides sufficient accuracy.
forces in the laboratory frame are written &5(y) To justify the simulation scheme, we think in terms of an
=eE(y)/y, wherey is the relativistic mass factor. If the equiliorium state which has an analytic solution under the
particle energy is constant, the betatron equation is given b¥pace-charge effects. Vlasov's equation tells us that any eu-
gilibrium distribution functionf is a function of the Hamil-
tonian H. As an example, the Gaussian distribution is
f(y,p) =foexp(—=H/Hp), wheref is the value at the origin in
phase space an#l, is a normalizing function, and the
where the prime indicated/ds, w is the bare betatron fre- Hamiltonian is written as
quency, and is the velocity of the design particle. In gen-

e
y'topy=——7, (2.2

eral, Ey(y) is nonlinear with respect tg. The perturbing 1 w2 eU
effects of nonlinear fields are included &sfunctions like H= §p2+ TByZJr 5" (2.9
kicks [6], ymo
0 Then, the self-potential satisfies Poisson’s equafiti
Ys+as Ys =—en(y)/ey. The density function is obtained by integrat-
V=M | eBYsiad) |, 23 ] Y)l€o Y y integ
(ys+As) (ys) %As 23 ing f(H) over momentum spacen(y):noexp[—{(wﬁy)Z/Z
Yy mo +eUl/(ymv?)}Hy] and ng=+27Hqf, The electric field

whereM is the transfer matrix of the linear focusing system " the equilibrium state is dominated by the equation

and As is the longitudinal step. The electric field, which is

assumed to be constant throuljs, is measured at the exit of JE, enp | 1 w_f; - _® ey
step. In this way, the symplectic condition is satisfied. y € ex Ho\| 2 y ymu2Jo ydy |-
The space-charge fields dependrdly) as shown in Eq. (2.5

(2.1) and its magnitude changes bin by bin. At the exit of the
step,n(y) is calculated by using the histogram obtained fromNumericaIIy solving Eq(2.5), we haveE,(y); then, its nu-
the phase-space mapping of particles with the vertical binnerical integration gives a steady potentifly). Substitut-
Ay. The numerical integration af(y) with linear interpola-  jng U(y) into Eq. (2.4), we have an equilibrium Gaussian
tion gives a space-charge field. distribution functionf(H). This exact equilibrium Gaussian
We chose to apply the current study to the 12-GeV protonyjstribution was put into the calculation as an initial condi-
synchrotron(KEK-PS). Most of the calculation parameters tjon of the simulation. The simulation results are shown in
were taken from the KEK-PS, wher€=340 m is the Fig 2. The rms emittance does not change much, with
circumference, the bare tunes arg=7.15 and»y=6.23,  growth of less than 0.3%. For a comparison, an exact equi-
where 27v,=wgC, and the injection energy is 500 MeV. |iprium Gaussian distribution function without any space-
In order to manifest the key role of the space-charge&harge effects was calculated. The growth of its rms emit-
effects in halo formation, an extremely high current, tance is shown in the same figure. Its rms emittance quickly
Av=1.85, was studied, where  Av=[wg  saturates with a big growth of about 4%. The discrepancy
—\Jws—eXng)y ?e, 'm v ?]C/(2m) is the incohrent petween the two cases is quite clear. Thus, the simulation
tune shift. In simulations, fOmacroparticles, which were scheme has been confirmed to give a reasonable result.
chosen from the limit of the available CPU, were tracked for
more than 100 turns. For choosidg, the saturation of the
rms beam sizer of the simulation result was monitored as a
function of As (see Fig. 1L As a result,As=5 cm was
applied. The value oAy is a common parameter for both ~ We now call a beam having an exact equilibrium distri-
histogram and numerical integration. Ay too short is very  bution function with space-charge effects as a “matched

lll. STEADY STATES FOR MISMATCHED GAUSSIAN,
WATERBAG, AND SQUARE-COSINE DISTRIBUTIONS
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FIG. 3. rms emittance growth of the mismatched beams. En‘ b
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<2
beam” and other beams as “mismatched beams.” The simu- %»
lations were carried out for three cases of mismatched beams 0
with Gaussian, waterbag, and square-cosine distributions.
The square-cosine distribution is defined dgy,y’) £ UL L L L
=focof[my?>+y'2{2R(y,y')}], where R(y,y’) is the 86 -"llnol:)lgll -
distance from the origin to the outer edge throughy() in 2 — - —matched| ]
phase space. Notable features are that the profile is continu- ‘é e
ous at the beam boundary like that of a Gaussian distribution, % -
and the beam edge is finite like that of a waterbag distribu- < —
tion. All initial distribution functions have the same total Q Q 4
current and the same rms emittance as the matched beam. ] NS LTI SV
The rms emittance growth of the mismatched beams is 0 5 10 15 20

shown in Fig. 3. Gaussian and square-cosine distributions y (mm)
quickly arrive at the steady state after less than a few tens of 5 g Beam-density profile for three initial distributions)

turns (<3 for Gaussian and<30 for square-cosing  Gayssian(b) square-cosine, and) waterbag. The dashed and solid
whereas the rms emittance of the waterbag beam still growges denote the initial state and 100th turn, respectively, and the

over 1200 turngsee Fig. 4 The beam density of each dis- gashed and single-dotted lines represent the Vlasov's solution of
tribution is shown in Fig. 5. It is found that a beam with an fig. 2.

initial square-cosine distribution approaches a Gaussian dis-

tribution in the steady state. On the other hand, a beam wittyineq by fast Fourier transforFFT) are shown in Fig.

a waterbag distribution tends to become flat because of reyp,) \where the particles are numbered from the beam core

distribution towards the beam edge. o edge toward the outside. All spectra indicate sharp peaks,
The phase-space projections are shown in Fig. 6, and sugzhere vs=5.23 is the net betatron tune depressed by space-

gest that particles escaping from the core are responsible faf5rqe forces. For a comparison, the oscillation frequency

the growth of rms emittance. In addition, it is remarkablespectra for nonresonant particles are shown in Figg.ahd

that there are two vacant regions where particles do not exisf(q) The oscillation frequency simply depends on the oscil-

This particle redistribution seems to originate from nonlineaation amplitude because of the nonlinear space-charge

resonances. Ten test particles were put in one vacant regiqRygs. This means the motions of the test particles are domi-
for the square-cosine distributigsee Fig. 7a)] and tracked  pated by nonlinear resonances and the vacant region corre-
for another 100 turns. The oscillation frequency spectra Obéponds to the resonance islands.

Since there are no external nonlinear fields in the uniform

%\1.72 T T I I focusing channel, the sources driving the nonlinear reso-
8 B nances have been identified to be the space-charge self-
E1.70 o fields. The simulation results also show a notable oscillation
E - of the rms beam size as shown in Fig. 8, which is simply
£ C induced by mismatching. A parametric resonance between
$1.68 - the single-particle motion and the rms beam core oscillation
5 - | can be excited when the depressed betatron tynand the
'51.66 [ e e ~—— rms core oscillation tune, satisfy v;/v.=i/j, wherei and

v - j are integer$7]. The lowest dominating resonance is obvi-
51 6 C I I | | ously a second-harmonic resonance which is capable of cre-

ating two resonance islands as shown in Fig. 6. Certainly, the
FFT of the core oscillation exhibits a single sharp peak at
v.=10.45 as shown in Fig. 9. The results strongly suggest

FIG. 4. RMS emittance growth of the mismatched waterbagthat the major source of the second-harmonic resonance is
beam. the rms beam core oscillation.

10% 107 10t 10°
turn number
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IV. NONLINEAR RESONANCE EXCITED 2o v @ $% .03
BY BEAM-CORE OSCILLATION e "-.j"-‘ — ,..:‘:,."' ¥ ]
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In order to confirm the speculation suggested by the simu- 1 e, e £ -
lation results that the rms beam-core oscillation is capable of C .
driving the second-harmonic resonance, we have developed ;) uf S T B A I A
an analytic approach using an isolated resonance Hamil- -20 -10 y(glm) 10 20

tonian. Here, the beam distribution is assumed to be a Gauss-
ian distribution with the rms beam size oscillating at a single d

frequency. This isr(s)= o[ 1+ 8 cos.S)], whereoy is the 200 rrr T T
averaged rms beam siz8&,is the maximum deviation from C P ]
0o, andw.= 27 /C is the frequency of the beam-core os- 150 |- ——g:(l) : 3
cillation. Then the Gaussian distribution in the rest frame is E ----- test2 i ]
given by n(y,s) =Noexd —y{20(8)}J{\2mo(s)}, where Fo 1] 2 It IR E
Ny is the total number of particles per unit length in the rest AR o = " H .
frame. The electric field of this beam associated with the C _ ,", ii ]
charge density is written in the form of a Taylor O BN :: .
expansion E,(y,s)=eNoSp_o(—1)"y2""1/{eg\27rn!(2n - ool oon .
+1)2"0(s)?"*1}. The original perturbed betatron equation 040 p L —
- . 1 5 5.0 55
(2.2) is rewritten as Vg

6.0

FIG. 7. (a) Position(solid triangle and(b) frequency spectra of

[

"+ wly=A
y ey Onzon!(2n+1)2”

(_1)n y2n+l

O_(S)ZnJrl'

(4.1)  tra of nonresonant particles.

0

(="

the test particlesic) The Poincarenap andd) the frequency spec-

where Ay=e?Ng /{y?e;muv?\/27}. Introducing action-angle H=wgl=Ag2,
variables  ,J), where y=\2J/w,cos¢ and p
=\2wyJsin¢, the Hamiltonian equivalent to Ed4.1) is

expressed as

X

zJ)n+l
;18 Fﬂ(¢1s)1

A=0 n!(2n+2)(2n+1)2"o3"*?

4.2)
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where

COSszquﬁ
[1+ 5coq wes)]P" L

Fn(é,8)=

In the case of interest, whe#e<1, Eq.(4.3) is approximated

by

Fo(¢,8)=[1—(2n+1)5cog w.S)]cos" 2.

Here, cos.sS)cos" 2¢ in Eq. (4.4) is decomposed in terms
of cos(2¢=* w.S), wherel is an integer. The second-harmonic
resonance is excited in the case that the phase ofZ4).

4.3

(4.9

4000 T T ' ——

T (m%rad’ s1)

1000 - —— =

J (m2 rad’ s'l)

3 4
¢ (rad)

FIG. 10. (a) Contour plot of the Hamiltonia10). (b) Simula-

slowly varies W?th s. Because th.e secpnd-harmonic F€SO-tion result of Fig. 6 exhibited in the action-angle spaes,
nance of the simulation result is excited in the case 0f-=4.38 mm corresponds tb=251.2 nfrad 's ! at =0 rad.

vglv,=1/2, it is found that the slowly oscillating phase is

2¢— wS. The rapidly oscillating terms, except for the terms wherea(n)=—(2n)!(n!) “3(n+ 1)71(_403‘0 )~"~1. The
including 26— w.s, disappear after averaging the Hamil- yarivation is given in the Appendix. b

tonian of Eq.(4.2) over many turn$5]. The averaged Hamil-

A contour plot of the Hamiltoniari4.5) is shown in Fig.

tonian is called the isolated resonance Hamiltonian. A Ca10. The values ofwy, 0o, and & at the steady state are
nonical transformation from,J) to (i,J), where = ¢ " ain

—wcs/2 is physically a rotation in phase space, is made tqyjia| square-cosine beam. Two resonance islands are shown
remove any time dependence from the isolated resonanG§early. The position and size of the resonance islands are

Hamiltonian. The isolated resonance Hamiltonidry, is

written as

o]
We

HiSO_(w,B_ 2 )J_ZO—OAOnZO a(n)Jn+l

« 1 2n+16 5

N1 niz 20|
5 IIIIIIIIIIIIIIIIIII
4= -

3 -

30

P ]
1~ -
0 I||IIIIIIJLIII|IIII
0 5 IVO 15 20

C

(4.9

chosen based on the simulation results for the case of an

well known to be a good measure of the relative strength of
perturbing terms. We evaluate these parameters from the
beam parameters and the machine parameters. For this pur-
pose, we will find the stable fixed and unstable fixed points
of this nonlinear system. The stable fixed pointsjat /2

and 37/2 rad and the unstable fixed point @=0 and

7 rad are analytically evaluated from the canonical equa-
tions d¢/dt=09H/9J=0 and dJ/dt=—-09H/dy=0. The
maximum and minimum values of the action variable along

2200 ) I LI B I ) I LI L L L L | I(X)O

g

2000 - - 900 §

o~ 5
£ 1800 —— oo
g 1600 ——T z
1400 ——Resonance width[] 7% &
g —~
= 1200 1600 &
000" """"TTTTTTTTTTTTS 4500 &
800 ] I L1 1 1 I L1 1 | I L1 1 1 I 4m 3’._‘

5 10 15 20
Doy

FIG. 9. Frequency spectrum of the rms beam core oscillation

after arriving at a steady state.

FIG. 11. Jhax: Imin @nd resonance width Vs,
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a result is shown in Fig. 11. Als@,,, must be more than 11.
Ao 120 A lower N, gives the wrong results. Here,,,=15 has
44 ° E been applied.

F o) ° - 115 Calculations 0fJ . and J,,i, are straightforwardly per-
~42F . formed using the canonical equations, if the valuesrgf
54_0 F ° J110< w¢, and § at the steady state, which depend on the initial
o E o o ] state, are given. The example of the simulation result shown

383 oo ] in Figs. 12a) and 12b) was obtained assuming initial states

3 0 010> with the same square-cosine distribution but with a different

36 F ® v . .
C c 4 Av. The Ja andJy,, are calculated employing each set of
34b i L LTl d 00 the above parameters. The calculated locations of the reso-
0.0 05 A9 13 20 nance islands are in good agreement with the simulation re-
sults as shown in Figs. 1@ and 12d). We have reached the
b conclusion that the second-harmonic resonance is driven by
0.04 T T T the beam-core oscillation of the nearly Gaussian distribution.

C ] In addition, Fig. 10 clearly indicates that the outer edge of
0.03 F E the resonance corresponds to the location of the halo.

F . ° 3
«0.02 :_ _: V. CONCLUSION

- 3 Parametric interactions between a core oscillation and the
0.01 - PY = highly nonlinear motion of individual particles drive the

- E second-harmonic resonance for a 1D Gaussian distribution.

0 T T T This idea supports the speculation of Ref] for a realistic
0.0 0.5 1.0 1.5 2.0 beam distribution. The second-harmonic resonance is a
Av source of emittance growth, which results in a beam halo at
¢ the outer edge of the resonance islands. The location of the
2500 halo is analytically tractable using canonical equations de-
L BN LA L o) rived from the isolated resonance Hamiltonian. Nonlinearity
2000 [~ O/__Q__L—— - in the particle motion is crucial in determining the location
~ © of the halo; the second-harmonic terms down-fed from
= 1500 - PO o higher order of the nonlinear terms are included in order to
'g 1000 |- et e -~ | accurately estimate the halo location. An estimation of the
& —J1 . H, halo location would provide a reasonable choice of the
= SO0t Hy u physical aperture or halo collimator in proposed high-
o] © Jma Simulation _ intensity proton accelerators.
® ., Simulation Applications of the developed analytic tool for a more
'50%0 = '0'5' = 'O' - I1I5I - '20 realistic 2D distribution in periodic focusing seem to be

) ) A ’ ) straightforward. They will be discussed in forthcoming pa-

pers.
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~ 0 o BT A W AT N U U O NN OO OO O O O B
0.0 0.5 1A.8 1.5 2.0 In this appendix, we derive Eq4.5 from Eq. (4.2). In
Eq. (4.4), the substitution
FIG. 12.(a) o0g andv, vsAv. (b) § vsAv. (€) Jpax @andJIpmin VS
Av. (d) Resonance width vAv. 1 [2n+2 1
cog"t2g= ( ) —
the trajectory through the unstable fixed point are defined as on+2\ n+1 220+l
Jmax @ndJ,in, respectively. The size of the resonance island n
(resonance widthis given byJma—Jmin ON the action axis. « 2 ( 2n+2 cog216) (A1)
In order to obtain a necessary and sufficient limjt, in E1\n—I+1

summation of Eq.(4.5), the values 0fd 2, Jmin @nd the

resonance width were calculated as a functiomgi,. Its  gives
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1 2n+2\ 2n+1/2n+2
- 6C0S w.S)

Fa($:9)= 02| n+1 n+1

22n+2
1 &/ 2n+2
cog2l ¢)

* 22n+1 ;1 n—I+1

(2n+1)6 & (2n+2

~ oan+2 ;1 n—1+1

{coq 2l p+ w.S)

+cog2l p— weS)}. (A2)

Thus, the time-averaged Hamiltonian is given by
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~ (_1)” (_)n+l
X<nZO nl(2nt2)(2nt 12io2 E wy) S

%

(—=1)M" 2n)!

=wgl—A
P70 (nh3(n+1)(200) " Ty
1 52n+1 5 A3
“[nr1 T g eot2dm )| (A3)

Since (H) is not a constant of the motion, the canonical
transformation from ¢,J) to (¢,J) is made, where the gen-
erating function isF,=J. Thus, the isolated resonance
Hamiltonian, Eq.(4.5), is obtained.
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